Convergent extension: the molecular control of polarized cell movement during embryonic development.

نویسندگان

  • John B Wallingford
  • Scott E Fraser
  • Richard M Harland
چکیده

During development, vertebrate embryos undergo dramatic changes in shape. The lengthening and narrowing of a field of cells, termed convergent extension, contributes to a variety of morphogenetic processes. Focusing on frogs and fish, we review the different cellular mechanisms and the well-conserved signaling pathways that underlie this process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo.

In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgest...

متن کامل

Coordination of Cell Polarity during Xenopus Gastrulation

Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for i...

متن کامل

Coordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling

Most animals undergo gastrulation to establish germ layers and embryonic axes. The dynamic morphogenetic cell movements that take place during gastrulation are highly coordinated. In Xenopus embryos, these cell movements, which include involution and convergent extension, are driven predominantly by mesodermal cells (Keller, 1991; Keller et al., 1992). This is particularly obvious during conver...

متن کامل

Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis.

During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that dif...

متن کامل

Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement.

Cul3, a Cullin family scaffold protein, is thought to mediate the assembly of a large number of SCF (Skp1-Cullin1-F-box protein)-like ubiquitin ligase complexes through BTB domain substrate-recruiting adaptors. Cul3 controls early embryonic development in several genetic models through mechanisms not understood. Very few functional substrate/adaptor pairs for Cul3 ubiquitin ligases have been id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 2002